Influence of Curing on the Strength Development of Calcium-Containing Geopolymer Mortar

نویسندگان

  • Xueying Li
  • Zheng Wang
  • Zhenzhen Jiao
چکیده

This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1) standard curing at 20 ± 3 °C and RH 95% (C); (2) steam curing at 60 °C for 24 h (S); (3) steam curing at 60 °C for 6 h (S6); and (4) oven curing at 60 °C for 24 h (O), then the latter three followed by the standard curing. Under the standard conditions, the flexural strength and compressive strength of Class C fly ash geopolymer mortars developed quickly until the age of 7 days, followed by a gradual increase. Specimens with Class F fly ash plus Ca(OH)₂ showed slow increase till the age of 28 days. Under these non-standard conditions (2-4), all specimens showed higher 3-day strength, while later strengths were either higher or lower than those in standard conditions, depending on the type of the precursor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/...

متن کامل

The Effect of Different Parameters on the Development of Compressive Strength of Oil Palm Shell Geopolymer Concrete

This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate...

متن کامل

SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing

In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal ...

متن کامل

The Influence of Graphene Oxide on Mechanical Properties and Durability Increase of Concrete Pavement

Herein, the performance of graphene oxide (GO) in improving mechanical properties and subsequently reducing the permeability of cement composites used in concrete pavement, is studied. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was...

متن کامل

Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete

Due to growing environmental concerns of the cement industry, alternative cement technologies have become an area of increasing interest. It is now believed that new binders are indispensable for enhanced environmental and durability performance. Self-compacting Geopolymer concrete is an innovative method and improved way of concreting operation that does not require vibration for placing it an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013